THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH 3030 Abstract Algebra 2024-25
Tutorial 4
3rd October 2024

* Tutorial exercise would be uploaded to blackboard on Mondays provided that there is a
tutorial class on that Thursday. You are not required to hand in the solution, but you are
advised to try the problems before tutorial classes.

* Please send an email to echlam @math.cuhk.edu.hk if you have any questions.

. Recall the definition of automorphism group, can you determine the automorphism groups
of Z, for prime p and Z? (Bonus: How about automorphisms of Z*? Hint: think about
linear maps.)

2. Suppose G is a finite group and 7' € Aut(G) so that T'g = g < g = e, prove that every
h € G can be expressed as g~ 1(T'g) for some g.

3. Suppose G is a finite group with 7' € Aut(G), so that T'g = g < g = e. Suppose further
that 72 = 1d, show that G is abelian.

4. Find the centers for the dihedral group Ds,,, the symmetry group of n-gon.

5. We have learnt about direct product of groups in the lectures as group structure defined
on a new set G; x (. It is possible to make sense of direct product internally within a
group as follows.

Suppose G is a group satisfying the following,

(a) H, K are normal subgroups of G.
(b) HN K = {e}.
(¢ G=HK={hkeG: he H ke K}

Show that G =2 H x K.



 If time permits, I will cover the following extra materials in the tutorial. Note that the
extra materials would NOT appear in the midterm nor exam.

Notes on semidirect products

In the lectures, we have encountered two notions about constructing groups from smaller
pieces. The first is direct product H x K, which is formed by imposing no conditions on how
elements of H, K interact. In other words, we set hk = kh for any h, k. There is a second notion
of a group extension that is more sophiscated. Whenever we have a short exact sequence,

1 H—-G—-K—>1

i.e. an injective 1 : H — G and a surjective g : G — K together with the condition
that im(p;) = ker(¢2). We say that G is extension of K by H. In this case, note that H =
w(H) = ker(p2) can be regarded as a normal subgroup of GG, and by isomorphism theorem
K = G/p1(H). So in the case when H, K are finite, |G| = |H| - | K|, and we think of H, K as
building blocks of G. However, in general there is no good way of writing down the structure
of G basedon H, K.

Semidirect product is a middle ground between direct product and group extension. In Q6
above, one would obtain semidirect product when the condition H, K are normal subgroups
is relaxed to just having H as a normal subgroup and K is a general subgroup. We use the
notation I x K or K x H to denote semidirect products (note that this is not symmetric unlike
direct product). One simple example is G = Ss, it is the semidirect product of the subgroups
H = ((123)) and K = ((12)). Notice that K is not normal here, in particular generally we
won’t have the property that hk = kh like we had for direct products. For that reason, in
general the isomorphism types of H, K alone is not enough to determine H x K, we need
specific details of how they interact within a bigger group G as in the definition.

There is another way of describing the extra data by using automorphism group, which you
can think of as describing the relation hkh'k’ = h"k"” in G = HK. Define ¢ : K — Aut(H)
by k — ¢r(h) = khk™!, one can check that this is a homomorphism. With this, we have for
any h,h' € Hand k, k' € K,

hkh'E = h(kR k™ Kk = ho(RW)kk' = KK,
and (hk)™ = (k' h ™ = k' h )k = g (k!

In other words, we can determine the structure of H x K by the data of the map K — Aut(H ).
Like the case for direct products, we can define semidirect products of H, K externally without
starting from a bigger group G.

Theorem. Let H, K be groups and suppose we have a homomorphism ¢ : K — Aut(H),
then there is a group GG so that we have embeddings ¢; : H — G and ¢, : K — G so that
G = Ll(H> X L2(K>.

Proof. Let G = H x K as sets, we can define the group operation on G by taking (h, k) -
(W, k") := (heg(h'), kE"). Writing 1 as both the identities of H and K, we also have (1,1) is
an identity of G since (1,1) - (h, k) = (1- p1(h),1- k) = (h, k) and similarly for right identity.
We define the inverse of (h, k) by as (h, k)™ = (pp-1(h™1), k™). Then (h,k)~" - (h,k) =



(or-1(hHp-1(h), k k) = (pp-1(h7'h),1) = (1,1) so left inverse exists, similarly one can
verify for right inverse. I leave the proof of associativity of the group operation to the readers ;)

With G constructed, we have natural embeddings H — G by ¢(h) = (h,1) and K — G by
t2(k) = (1,k). One can also verify that they are indeed injective homomorphisms (this is not
by definition because we have a modified operation on H x K!) First of all, ¢;(H) < G because
the second component of (h, k) - (z,1) - (h,k)~! is simply given by k- 1-k~! = 1. Now
1 (H)Nw(K) =(1,1),and G = HK since any (h, k) = (h,1) - (1,k) = (hp1(1), k). So we
indeed have G = 11 (H) X 15(K) as claimed. |

The notion of semidirect product may look weird at first. One can realize it as a twisted
product between two groups. This generalizes direct product since direct product is just given
by the trivial map K — Aut(H) by k +— Id. There is yet another way to realize semidirect
products as a restricted type of group extensions.

Theorem. Suppose 1 — H 5 G % K — 1is an exact sequence that splits, i.e. there exists a
homomorphism s : K — G sothatypos=1d: K — K. Then G = p(H) x s(K).

Proof. Recall that in any short exact sequence, ¢ : H — G is injective, and ¢ : G — K is
surjective. This forces s : K — G to be injective, since s(k) = e = k = ¢ (s(k)) = ¢(e) = e.
To show that GG is the semidirect product of subgroups, we must show that:

1. ¢(H) is normal: This is true since p(H) = ker(¢)).

2. p(H) N s(K) = {e}: If g = p(h) = s(k), then e = ¢(p(h)) = ¥(g) = ¢(s(k)) =
k. Here the first equality is from exactness, and the last equality is from property of s.
Therefore g = s(k) = s(e) = e.

3. G = p(H)s(K), in the finite case, we can simply see this by cardinality argument that
|G| = |e(H)s(K)| = |¢p(H)| - |s(K)| = |H| - | K|, which is guaranteed by property of
exact sequence. In general, given any g € G, we can take k = v(g). Note that g - s(k™1)
isin o(H) = ker(v) since ¥ (g) - (s(k™')) = kk=! = 1. Therefore g = gs(k™')-s(k) €
p(H)s(K).

This proves that G = ¢(H) x (K). |

One can also just construct a map K — Aut(H). To simplify notation, let’s not distinguish
between H = ¢(H) as they are isomorphic. Then ¢y, : H — H is defined simply by ¢ (h) =
s(k) - h - s(k)~1. Conversely, one can also construct a split exact sequence whenever we have
G = H x K: as we can take H < G, we have the sequence | - H — G — G/H — 1. Here
we can identify K = (G/H since G = H K and the right cosets have multiplication given by
(Hk)(HE') = H(kK') by property of semidirect product. Then the splitting is just given by
inclusion K — G because K — G — G/H is givenby k +— 1 -k — Hk.

We end this section by discussing an example and a non-example of semidirect product.

Consider the normal subgroup SL(n, F') < GL(n,F) where F' is an arbitrary field, this is
normal as it is obtained from the kernel of the homomorphism det : GL(n, F') — F'*, here F'*



is the multiplicative group of the field. We also have F'* < G L(n, F’) by

a 0 - 0
01 --- 0
Lia— | . . .
00 - 1

det

Clearly, det(t(a)) = a € F*, therefore 1 — SL(n,F) — GL(n,F) — F* — 1is a split
exact sequence, thus corresponding to a semidirect product. Alternatively, one can realize this
semidirect product via conjugate action of ¢(a), in other words F* — Aut(SL(n, F')) as given

by a — (A t(a)Ai(a)™t). Hence, we have GL(n, F) = SL(n, F) x F*.
For a non-example (a group extension that is not split), consider

1 =2y — Ly — Ly — 1

Where the first map is given by 1 +— p € Z,2. Since Z,: is abelian, if we have a splitting Z, —
L2, that would give two subgroups of Z,: that are isomorphic to Z,, which are necessarily
normal. This would imply that Z,» = Z2, which is a contradiction.



